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Abstract
In this letter, we exactly solve the MFPT problem for a one-dimensional random
walk with random step size where there are two fixed reflecting boundaries and
a fluctuating absorbing boundary in between. We discuss the consequences
of these results in the context of site-specific DNA–protein and DNA–probe
interactions.

PACS numbers: 05.40.Fb, 87.10.+e, 87.15.Aa, 87.14.Gg

The site-specific association of a protein molecule or a small stretch of a DNA molecule (the
primer) with a large size DNA lattice (the template DNA) can be modelled as a random walk
with random step size [1–3]. According to the two-step model [4, 5], the protein molecule or
the primer molecule first non-specifically binds to the template DNA and then searches for the
specific site via unbiased random jump motions on the template DNA under a non-specifically
bound condition. Recently we have shown [6] that under random jump situations, when we
insist the condition that the protein molecule should escape only through the specific site
which is lying inside the template DNA lattice, there exists a limit for the associated mean first
passage time (MFPT, denoted as T) as limk→∞ T = N where N is the total size of the template
DNA (in base pairs) and k is the jump size (in base pairs) associated with the dynamics of the
protein molecule on the template DNA. The limit limk→∞ T = N clearly indicates that by
the random jump motion of the protein molecule on the template DNA the maximum achievable
site-specific association rate rm is rm = N−1 and to increase the rate beyond this limit either
the specificity associated with specific site needs to be decreased or an external free energy
input in the form of ATP (adenosine triphosphate) should be provided.

On the other hand, almost all the earlier two-step models on DNA–DNA or DNA–protein
interactions invariably assumed that the position of the specific site on the template DNA is a
fixed quantity which is an oversimplification of the underlying real process. This is due to the
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fact that the template DNA is a long polymer chain compared to that of the dimensions of the
protein molecule. Moreover, under solution conditions the template DNA is also undergoing
independent conformational fluctuations that in turn cause perturbations in the relative position
of the specific site on the template DNA with respect to the protein or the primer molecule.
Therefore, it will be of great interest to know the effect of such fluctuations in the absorbing
boundary on the MFPT associated with the escape of the protein molecule only through the
specific site under random jump conditions.

Let us consider a DNA lattice of N base pairs in length which possesses the specific site
at the lattice position a such that 0 < a < N . There is a protein molecule which was at the
lattice position x = x0 at time t = 0 and currently searching for the specific site a via unbiased
random jump motion with a jump size of k base pairs, i.e. starting from the lattice position
x, in the next step the protein molecule can be found anywhere in the interval [x − k, x + k]
with equal probabilities, i.e. 1/2k. The Fokker–Planck equation [7–11] associated with the
dynamics of the protein molecule is given as ∂tP = 2−1Dx∂x

2P . Here we should note that
there are reflecting boundaries at the lattice points {0, N}, i.e. ∂xP |x=0 = ∂xP |x=N = 0 and the
only absorbing boundary at the lattice point (a), i.e. P |x=a = 0 for the protein molecule. Here
Dx = 6[(k + 1)(2k + 1)]−1 is the one-dimensional phenomenological diffusion coefficient
in the dimensionless form and P = P(x, t | x0, 0) is the probability associated with the
protein molecule to be found at the lattice point x at time t where the initial condition is
P(x, 0 | x0, 0) = δ(x − x0). Now the MFPT associated with the escape of the protein
molecule from the interval [0, N ] satisfies the backward FPE as 2−1Dx∂x

2Tx = −1 where
the boundary conditions are dxTx |x=0 = dxTx |x=N = 0 and Tx |x=a = 0. Unfortunately,
the differential equation for the MFPT (Tx) with three boundary conditions cannot be solved
analytically. However, recently we have given [6] an approximate solution to this problem by
the weighted averaging method. The brief idea is as follows. The entire lattice interval [0, N ]
is broken into two subintervals [0, a − 1] and [a + 1, N ]. Now, let us consider M number of
trajectories starting from the lattice point x = 0 at time t = 0. When the jump size associated
with the dynamics of the protein molecule is k > 1, then among M number of such trajectories
Q number of trajectories will hit the absorbing point x = a from the subinterval [0, a − 1]
with a weighted MFPT of TL and R number of trajectories will hit the absorbing boundary
from the subinterval [a + 1, N ] with a weighted MFPT of TR. Finally the overall MFPT (T)
is computed as T = M−1[QTL + RTR]. Here pR = M−1R and pL = M−1Q are the splitting
probabilities associated with the entry of the protein molecule from the interval [0, a − 1]
and from the interval [a + 1, N ] into the absorbing point x = a, respectively. Using simple
arguments [6] one can show that pR = 2−1[1 + k−1] and pL = 2−1[1 − k−1].

Now let us drop the assumption that the absorbing point is fixed at x = a and we assume
that it fluctuates in the interval [Nl, Nm] where the interval lies inside the interval [0, N ]
such that 0 < Nl < Nm < N . In other words the absorbing boundary (a) is undergoing
a random jump motion in the interval [Nl, Nm] with a jump size of δ = [Nm − Nl] with
equal probabilities. To compute the MFPT associated with the escape of the protein molecule
starting from the lattice point x = 0 at time t = 0, we break the interval [0, N ] into three
subintervals namely [0, Nl − 1], [Nl, Nm] and [Nm + 1, N ]. Let us assume that the jump
size associated with the dynamics of the protein molecule is such that k < [Nm − Nl] and
we consider totally M number of trajectories starting from the lattice point x = 0 at time
t = 0 among which Q number of trajectories will be absorbed at the subinterval [Nl, Nm] from
the subinterval [0, Nl − 1] and R number of trajectories will be absorbed at the subinterval
[Nl, Nm] from the subinterval [Nm + 1, N ]. First let us consider only the interval [0, Nl − 1].
Upon escaping from the subinterval [0, Nl − 1], the protein molecule can hit any point in the
subinterval [Nl, Nm] and may get absorbed or may escape into the subinterval [Nm + 1, N ]
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(even when k < [Nm − Nl]) since the absorbing boundary fluctuates inside the subinterval
[Nl, Nm].

Suppose let us assume that the current position of the protein molecule is x = Nl. In the
next step it can be found anywhere in the interval [Nl − k,Nl + k] with equal probabilities.
Among 2k number of such possible positions, k − 1 number of possibilities will lie again
in the interval [0, Nl − 1] and k + 1 number of possibilities will lie inside the absorbing
subinterval [Nl, Nm] and therefore may get absorbed inside or move to the subinterval
[Nm + 1, N ]. In other words, the splitting probability associated with the entry of the
protein molecule from the subinterval [0, Nl − 1] into the absorbing interval [Nl, Nm] is
p1 = (2k)−1[k − 1] = 2−1[1 − k−1] and obviously the splitting probability associated with
the entry of the protein molecule from the subinterval [Nm + 1, N ] into the absorbing interval
[Nl, Nm] is p3 = 2−1[1 + k−1]. Now using these splitting probabilities one can write Q = p1M

and R = p3M where M = P + Q is the total number of trajectories started from the lattice
position x0 = 0 at time t = 0. Here we should recall the fact that when [Nm − Nl] = δ = 0,
i.e. no fluctuations in the absorbing boundary, then the situation will reverse and the splitting
probabilities become 0p1 = 1 − p1 = 2−1[1 + k−1] and 0p3 = 1 − p3 = 2−1[1 − k−1] as
we have shown [6] earlier in the case of a fixed absorbing boundary at the lattice position
x = a.

Now we compute the corresponding MFPTs. The MFPT (T1) associated with the
escape of the protein molecule from the interval [0, Nl − 1] into the interval [Nl, Nl + i]
is simply given as T1,i = Dx

−1(Nl + i)2. The probability µi associated with the hitting of
the protein molecule inside the interval [Nl, Nl + i] is simply given as µi = i

k
, which is the

weighting factor here. Now using this weighting factor, noting the initial condition x0 = 0,
one can compute the MPFT associated with the escape of the protein molecule from the
interval [0, Nl − 1] into the subinterval [Nl, Nm] only through the lattice point x = Nl as
follows:

T1 = Dk
−1Nl

2 + D−1
k

k∑
i=1

µi[i
2 + 2Nli] = D−1

k Nl
2 + 2Nl + f (k), (1)

where f (k) is defined as f (k) = 3(k+1)

2(2k+1)
and the weighting factor µi is defined as µi = i

k
.

Here T1 is the average residence time for which the protein molecule stays in the interval
[0, Nl − 1] before it escapes into the subinterval [Nl, Nm].

Now we compute the total time T2 that the protein molecule takes to travel from the lattice
point x0 = 0 and enters inside the interval [Nl, Nm] and stays there if not absorbed. Here
we should note that under random jump conditions, from the interval [0, Nl − 1] the protein
molecule can jump into the interval [Nl + i, Nm] where i = 1, 2, 3 . . . k with a probability of
µi = i

k
, i.e. the initial positions associated with the dynamics of the protein molecules inside

the interval [Nl, Nm] are Nl + i where i = 1, 2, 3 . . . k. Keeping this in mind, the average
residence time associated with the protein molecule to stay in the subinterval [Nl, Nm] (if it is
not absorbed) can be calculated as follows:

T2 = D−1
x Nl

2 + D−1
x

k∑
i=1

µi[(Nm − Nl)i − i2] = D−1
x Nl

2 + (Nm − Nl) − f (k). (2)

Here the term Dx
−1Nl

2 in equation (2) is added to account for the time that is spent by the
protein molecule in the interval [0, Nl − 1] before it enters into the interval [Nl, Nm]. Similarly
starting from the lattice point x0 = 0, the MFPT (T3) associated with the escape of the protein
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molecule from the interval [Nm + 1, N ] only through the lattice point x = Nm into the interval
[Nl, Nm] can be calculated as follows:

T3 = Dk
−1Nl

2 + (Nm − Nl) + D−1
k

k∑
i=1

µi[2(N − Nm)i − i2]

= Dk
−1N2

l + (Nm − Nl) + 2(N − Nm) − f (k)


 . (3)

Here the term Dk
−1N2

l is added to T3 to account for the time that is spent by the protein
molecule in the interval [0, Nl − 1] and the term (Nm − Nl) is added to account for the time
for which the protein molecule stays in the interval [Nl, Nm] (if not absorbed inside the interval
[Nl, Nm]) before it enters the interval [Nm + 1, N ].

Now under the condition that [Nm − Nl] > 0 and using the splitting probabilities p1

and p3 one can easily compute the overall MFPT (T) associated with the protein molecule to
escape only through the absorbing point which fluctuates inside the subinterval [Nl, Nm] as
follows:

T = p1T1 + p3T3 = D−1
k N2

l +
Nl

2
+ N − Nm

2
+

1

k

(
N − Nm

2
− 3Nl

2
− f (k)

)
. (4)

However here one should note that when [Nm − Nl] = 0, equation (4) becomes T =
0p1T1 + 0p3T3. Equation (4) is the central result of this letter from which we can compute
various limiting values as follows.

Case 1. When k = 1, Nm = N and Nl = 0, i.e. when the fluctuating absorbing boundary
covers the entire interval [0, N ], equation (4) reduces to T ≈ N .

Case 2. Similarly when k → ∞, Nm = N and Nl = 0, equation (4) reduces to limk→∞ T ≈ N
2 .

This is an important result as far as the DNA–protein interactions are concerned. We should
recall the fact that when the protein molecule searches for the specific site on the DNA lattice
by a random jump method then the maximum achievable site-specific association rate is
rm = N−1. In this context the current results clearly suggest that this limiting rate rm can be
doubled, i.e. rm = 2N−1 by introducing fluctuations in the relative position of the specific site
on the template DNA with respect to the protein molecule.

Case 3. When Nm = N and k = 1, then we obtain T ≈ Dk
−1Nl

2 + N − Nl. Now if we
define Nl = N − δ where δ = N − Nl is the fluctuating interval associated with the absorbing
boundary, then we obtain the relation for the overall MFPT as T ≈ Dk

−1[N2 + δ2 − 2Nδ] + δ.
Simple random walk simulations in fact prove the validity of this result (figure 1).

Case 4. When Nm = Nl, i.e. [Nm − Nl] = δ = 0 then from the relation T = 0p1T1 + 0p3T3

we recover the previous [6] result as follows:

T = 1p1T1 + 1p3T3 = D−1
k Nm

2 + N − N

k
+

2Nm

k
+

f (k)

k
. (5)

From equation (5), under the condition that Nm = Nl, i.e. in the absence of fluctuations in the
absorbing boundary we recover the limit value as limk→∞ T = N .

Case 5. Finally when Nm = N and Nl = 0, i.e. the absorbing boundary fluctuates in the entire
interval [0, N ], in equation (5) we obtain the k-dependent limiting value as T ≈ N

(
1
2 + 1

2k

)
from which in the limit k → ∞ we recover the result of case 2.

Here we should note that the splitting probabilities p1 and p3 are associated with the
absorbing interval [Nl, Nm] and not associated with the absorbing boundary which fluctuates
inside the interval [Nl, Nm]. When [Nm − Nl] = 0, the splitting probabilities associated with
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Figure 1. Random walk simulations with random boundary conditions. Here the size of the linear
lattice is N = 50, the random walk step size k is k = 1, the lattice position x = 0 is the reflecting
boundary and the lattice position y is the absorbing boundary associated with the random walker
which can be anywhere in the interval [50 − δ, 50] with equal probabilities, i.e. 1/δ. Here δ is
varied from 0 to 50 and the MFPT at each δ value was calculated over 105 realizations and the
dotted lines are the prediction by the limiting case 3 of equation (4).

the protein molecule to enter into the absorbing boundary at x = Nm = Nl from left-to-right
pL as well as from right-to-left pR are simply given by pL = 0p1 and pR = 0p3, respectively.
However, when [Nm − Nl] > 0 and the jump size k = 1, then the associated left-to-right pL

as well as right-to-left pR splitting probabilities which are in turn functions of the fluctuating
absorbing interval δ = [Nm − Nl] that can be shown as pL = 1

2 + 3
δ+6 and pR = 1

2 − 3
δ+6 . The

derivation is as follows:
Suppose when k = 1, x0 = 0 and δ = 0 then the splitting probability associated with the

escape of the protein molecule through the absorbing boundary from the left-to-right (pL), i.e.
from the interval [0, Nm − 1] into the point x = Nm is pL = 1 and obviously the splitting
probability associated with the escape of the protein molecule from the right-to-left (pR), i.e.
from the interval [Nm, N ] is pL = 0. However, under the condition that δ > 0 and when the
absorbing boundary fluctuates in the interval such that [Nl, Nm] with equal probabilities then
it is obvious to note that pR < 1 and pL > 0 even when the jump size is k = 1. This is mainly
due to the fact that the randomly jumping absorbing boundary overtakes significant number of
incoming trajectories of the protein molecule inside the subinterval [Nl, Nm] which are coming
from left-to-right. However, here one should note that the splitting probabilities pR and pL are
in turn functions of the fluctuation interval δ of the absorbing boundary. Suppose let us assume
that the current position of the protein molecule on the DNA lattice is x = Nl. In the next step
the probability associated with the protein molecule to return back to the interval [0, Nl − 1]
is 1/2. Now if the protein molecule moves from x = Nl to the position x = Nl + 1 then at
the position x = Nl + 1 the probability to get absorbed is [δ/3 + 2]−1. This is due to the fact
that when the protein molecule moves from the position Nl to Nl → (Nl + 1), the absorbing
boundary can be either at x = Nl + 1 or it already moved from [Nl + 1, Nm] to Nl or moved
from the position Nl into the interval [Nl + 1, Nm] without meeting the protein molecule at
all. Due to this reason, the effective number of absorbing points inside the interval [Nl, Nm]
is only δ/3. However, the absorbing boundary cannot overtake the protein molecule at the
lattice positions Nl and Nm both from the left-to-right and from the right-to-left directions.
In other words the total number of effective absorbing points inside the interval [Nl, Nm] is
δ
3 + 2. Therefore when the initial position of the protein molecule on the DNA lattice is such
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Figure 2. Splitting probabilities ps associated with the entry of the random walker from the left-
to-right pL and from the right-to-left pR with respect to the position of the fluctuating absorbing
boundary as a function of the fluctuating interval (δ) associated with the absorbing boundary. Here
the size of the lattice is Nm = 50, the absorbing boundary can be found anywhere in the interval
[50 − δ, 50] with equal probabilities, i.e. 1/δ, the random walker step size is k = 1 and δ is varied
from 0 to 50 and the splitting probabilities at each δ value were calculated over 105 realizations.
Here the solid lines are the predictions pL = 1

2 + 3
δ+6 and pR = 1

2 − 3
δ+6 .

that x0 = 0, then the splitting probability associated with the entry of the protein molecule
from left-to-right of the absorbing boundary (not the interval [Nl, Nm]) is pL = 1

2 + 3
δ+6 and

obviously the splitting probability associated with the entry of the protein molecule from the
right-to-left of the absorbing boundary is pR = 1

2 − 3
δ+6 . This situation will be reversed when

x0 = N .
When δ � 6 and also δ ≈ N then we should note that pL ≈ 1

2 + 3
N

and pR ≈ 1
2 − 3

N

rather than pR = pL = 1/2 as in the case of δ = 0. The reason is as follows. We should
recall the fact that when the initial position of the protein molecule on the DNA lattice is
x0 = 0 and when δ ≈ N , the probability of the protein molecule to find the absorbing
boundary at each step is N−1. Due to this reason the gain in pL in the first step from the lattice
point x0 = 0 is N−1. On the other hand before the protein molecule moves from the lattice
position x0 = 0, the absorbing boundary can hit the lattice point x0 = 0 with a probability
of N−1 since x0 = 0 is also a reflecting boundary for the fluctuating absorber. Similarly
when the protein molecule approaches the boundary x = N the probability to get absorbed at
x = N from left-to-right is N−1. Therefore the total gain in the probability pL is 3N−1, i.e.
pL ≈ 1

2 + 3
N

and obviously pR ≈ 1
2 − 3

N
. Nevertheless, the situation will be reversed when the

initial position of the protein molecule on the DNA lattice is such that x0 = N . Simple random
walk simulations in fact prove the validity of these expressions for the splitting probabilities
(figure 2).

In summary, in this letter we have exactly solved the MFPT problem for a one-dimensional
random walk with random step size where there are two fixed reflecting boundaries and
a fluctuating absorbing boundary in between. In the context of site-specific DNA–protein
interactions, we have previously shown that by a random jump motion of the protein molecule
on the DNA lattice the maximum achievable site-specific association rate is rm = N−1 where
N is the size of the DNA lattice under consideration. However, the present results suggest that
when there are fluctuations in the relative position of the specific site on the DNA lattice with
respect to the protein molecule, then this maximum achievable site-specific association rate
can be doubled, i.e. rm ⇒ 2N−1.
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